Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise.
نویسندگان
چکیده
We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-L-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 A for both the OD1 (Asp-134)-H(E) (GAA) and H(E) (GAA)-N(E) (GAA) bonds, and 2.47 and 2.03 A for the S8 (AdoMet)-C9 (AdoMet) and C9 (AdoMet)-N(E) (GAA) bonds, respectively. The potential-energy barrier (DeltaE++) determined by single-point B3LYP/6-31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (-TDeltaS++) and zero-point energy corrections Delta(ZPE)++ by normal mode analysis are 2.3 kcal/mol and -1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be DeltaH++ = DeltaE++ plus Delta(ZPE)++ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is DeltaG++ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 +/- 0.2.min(-1)).
منابع مشابه
Modeling of Methyl Transfer Reactions in S-Adenosyl-L-Methionine Dependent Enzymes
A very important trend for studying biomolecules is computational chemistry. In particular, nowadays it is possible to use theoretical methods to figure out the catalytic mechanism of enzyme reactions. Quantum chemistry has become a powerful tool to achieve a description of biological processes in enzymes active sites and to model reaction mechanisms. The present thesis uses Density Functional ...
متن کاملQuantum Chemical Modeling of Enzymatic Methyl Transfer Reactions
In this thesis, quantum chemistry, in particular the B3LYP density functional method, is used to investigate a number of methyl transfer enzymes. Quantum chemical methodology is today a very important tool in the elucidation of properties and reaction mechanisms of enzyme active sites. The enzymes considered in this thesis are the S-adenosyl L-methionine-dependent enzymes glycine N-methyltransf...
متن کاملGuanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis.
The first inborn error of creatine metabolism (guanidinoacetate methyltransferase [GAMT] deficiency) has recently been recognized in an infant with progressive extrapyramidal movement disorder. The diagnosis was established by creatine deficiency in the brain as detected by in vivo magnetic resonance spectroscopy and by defective GAMT activity and two mutant GAMT alleles in a liver biopsy. Here...
متن کاملMild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development.
Among cerebral creatine deficiency syndromes, guanidinoacetate methyltransferase (GAMT) deficiency can present the most severe symptoms, and is characterized by neurocognitive dysfunction due to creatine deficiency and accumulation of guanidinoacetate in the brain. So far, every patient was found with negligible GAMT activity. However, GAMT deficiency is thought under-diagnosed, in particular d...
متن کاملActivation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism.
Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessively inherited disorder of creatine biosynthesis. The disease occurs in early life with developmental delay or arrest and several neurological symptoms, e.g., seizures and dyskinesia. Both the deficiency of high-energy phosphates in neurons and the neurotoxic action of the accumulated metabolite guanidinoacetate (GAA) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 44 شماره
صفحات -
تاریخ انتشار 2006